
Application Note 101
uM-FPU64

Reading GPS Data

Introduction
GPS data is used in a wide range of embedded systems applications. Adding a GPS device to an application can
consume significant resources on a microcontroller to handle the serial interface, and to parse and process the GPS
data. The uM-FPU64 64-bit floating point coprocessor has a number of capabilities designed to make handling GPS
data very straightforward. To utilize the maximum accuracy available from the GPS device, and to accurately
perform navigational calculations, 64-bit floating point support is required – a feature that is not readily available
with most commonly used microcontrollers.

This application note describes how to use the uM-FPU64 to read and process data from a GPS device. The GPS
device can be interfaced directly to the uM-FPU64, and all of the GPS processing offloaded from the main
microcontroller. For some applications the uM-FPU64 can be configured for stand-along operation, with no
additional microcontroller required.

Using uM-FPU64 as coprocessor for processing GPS data.

GPS Receiver

uM
-FPU

64

Microcontroller

GPS devices can be interfaced to any available uM-FPU64 digital input pins, or the SERIN pin. Built-in support for
NMEA sentence parsing and a full set of string instructions are available to facilitate reading the GPS data fields.
The uM-FPU64 IDE software can be used to create user-defined functions for handling GPS data, and these
functions can be stored in Flash memory on the FPU. Several code examples showing how to process GPS data are
available on the Micromega website.

Micromega Corporation 1 Revised 2013-03-28

Micromega Corporation 2 AN101: uM-FPU64 - Reading GPS Data

Connecting the GPS device to the uM-FPU64 chip
Most GPS devices send out serial data continuously at a regular interval using the NMEA-0183 serial data interface.
The serial data is then processed to obtain the required information. Two serial interfaces are available on the uM-
FPU64. One serial interface uses the SERIN and SEROUT pins which are also used by the built-in debug monitor
and uM-FPU64 IDE software for debugging and programming the FPU. When the debug monitor is not being used,
the SERIN and SEROUT pins can be used for general purpose serial I/O. The second serial interface can be assigned
to any of the digital input pins using the DEVIO,ASYNC instruction. The preferred method of connecting the GPS
device is to use one of the digital input pins, since the SERIN and SEROUT pins are then available for debugging.

If data is only received from the GPS device, only a single serial input is required. Applications that require
configuring the GPS device, or use proprietary interfaces may require both serial input and serial output and may
also require hardware flow control. These options are readily available using the DEVIO,ASYNC instructions.

The uM-FPU64 requires a serial interface of 3.3V. Many of the GPS devices used for embedded applications
provide TTL level output of 0V to ~2.5V. These can be interfaced directly to any of the FPU digital input pins. GPS
devices that use a TTL level output of 0V to 5V, can be connected directly to one of the FPU digital input pins that is
5V tolerant (e.g. D0, D1). If the GPS device uses RS-232 output, a converter is required to convert the signal to the
3.3V logic levels used by the uM-FPU64 chip.

Connecting GPS with TTL output.

uM-FPU64 D0 GPS
Receiver

Serial Output

Connecting GPS with RS-232 output.

uM-FPU64 D0 GPS
Receiver

Serial OutputRS-232
Converter

e.g.
ADM3202
Spark Fun RS232 Shifter SMD

Micromega Corporation 3 AN101: uM-FPU64 - Reading GPS Data

Brief Overview of the NMEA-0183 Data Interface
The NMEA-0183 data interface is commonly used for marine instruments and GPS devices. This interface usually
provides continuous serial data at a regular sample interval of one or two seconds, although GPS devices can often
be configured for different sample rates. The data is readable ASCII text, consisting of a series of NMEA sentences.
Each sentence begins with a dollar sign ($) and ends with a carriage return and linefeed. An optional checksum is
usually included, consisting of an asterisk (*) and two checksum digits at the end of the sentence. Each field is
separated by a comma. The first field indicates the sentence type, and the remaining fields contain the data. If the
data for a field is unavailable, the field is empty.

Sample NMEA-0183 Output from GPS device

Most applications only use a portion of the data that is received from the GPS device. The data is scanned until
particular NMEA sentence types are recognized, then the sentences are parsed to extract the data fields of interest.

NMEA sentence parsing using the uM-FPU64 chip
The SERIN instruction has a special input mode for NMEA sentence parsing. Using this input mode, the uM-FPU64
will scan for valid NMEA sentences, strip the $, checksum, carriage return and linefeed characters, confirm the
checksum, then set the status byte and store the remaining string in a 256 byte NMEA sentence buffer. The buffer
can store multiple sentences, allowing one sentence to be processed while other sentences are being received. The
SERIN instruction reads NMEA sentence from the buffer, sets the status byte, and moves the sentence to the string
buffer. The sentences can then be parsed, and the data fields extracted using various string instructions.

The following compiler statements enable digital pin D0 as a serial input, sets the baud rate to 4800 baud, and
enables NMEA input mode.

Once NMEA input mode has been enabled, the serial input is scanned for the beginning of the next sentence ($). The

$GPRMC,185847,A,5105.2567,N,11520.0118,W,29.6,288.2,250313,17.4,E,D*0A
$GPRMB,A,,,,,,,,,,,,V,D*19
$GPGGA,185847,5105.2567,N,11520.0118,W,2,07,1.2,1357.0,M,-17.4,M,,*47
$GPGSA,A,3,01,11,,14,,20,22,,25,,32,,0.0,1.2,1.2*32
$GPGSV,3,1,12,01,47,256,40,11,29,232,33,12,13,034,00,14,39,067,37*7B
$GPGSV,3,2,12,17,08,322,22,20,35,296,41,22,15,122,25,23,07,253,36*7F
$GPGSV,3,3,12,25,20,065,37,31,59,148,44,32,64,290,37,51,31,169,46*7D
$GPGLL,5105.2567,N,11520.0118,W,185847,A,D*5F
$GPBOD,,T,,M,,*47
$GPVTG,288.2,T,270.8,M,29.6,N,54.8,K,D*2F
$PGRME,5.4,M,8.8,M,10.4,M*1A
$PGRMZ,4452,f,*1F
$PGRMM,WGS 84*06
$HCHDG,270.8,,,17.4,E*16
$GPRTE,1,1,c,*37

 devio(ASYNC, ENABLE, D0, RX+BAUD_4800)
 serial(ENABLE_NMEA+ASYNC)

Micromega Corporation 4 AN101: uM-FPU64 - Reading GPS Data

sentence is then read, the checksum is confirmed, and the sentence is stored in a 256 byte NMEA buffer with the
leading $, checksum, carriage return, and linefeed removed. The serial(READ_NMEA+ASYNC) statement is
used to read a sentence from the buffer. This statement waits for the next available sentence, then transfers the
sentence to the string buffer and selects the first field (sentence type). A string comparison can then be done to
determine if the sentence will be processed further, or ignored.

If you need to do other things while you wait for a sentence to be available, the serial(STATUS_NMEA
+ASYNC) instruction can be used. It checks the NMEA buffer and sets the status byte to zero (Z) if the buffer is
empty, or non-zero (NZ) if a sentence is available or an error occurred.

In this example, we’ll use the serial(READ_NMEA+ASYNC) statement to wait until the next sentence is
available. Since we’re only interested in the GPRMC sentence, we simply loop until the sentence type matches.

Reading Latitude and Longitude from the GPRMC sentence

The GPRMC sentence is the "Recommended Minimum" sentence, and is the most common sentence transmitted by
GPS devices. It contains latitude, longitude, speed, bearing, satellite-derived time, fix status and magnetic variation.

The following diagram shows an example of the contents of the string buffer after receiving a GPRMC sentence.

We’re interested in the latitude and longitude fields. Latitude is stored in field 4 as DDMM.MMMM, where DD is
degrees and MM.MMMM is minutes. Field 5 is the North/South indicator (N for North, S for South). Longitude is
stored in field 6 as DDDMM.MMMM, where DDD is degrees and MM.MMMM is minutes. Field 7 is the East/West
indicator (E for East, W for West). Navigation calculations require the latitude and longitude values expressed as
decimal degrees. The values are converted as follows:

Latitude = DD + (MM.MMMM / 60)
Longitude = DDD + (MM.MMMM / 60)

e.g.
5105.2567,N is converted to 51.087611666 degrees latitude.
11520.0118,W is converted to -115.33353 degrees longitude.

 do
 serial(READ_NMEA+ASYNC)
 if strfield() = "GPRMC" then exit
 loop

 GPRMC,185847,A,5105.2567,N,11520.0118,W,29.6,288.2,250313,17.4,E,

Speed
over

Ground

Course
over

Ground
Sentence
Type

UTC
Time Status Latitude

UTC
DateLongitude

Magnetic
Variation

Micromega Corporation 5 AN101: uM-FPU64 - Reading GPS Data

The following function converts latitude or longitude fields to decimal degrees. The field number is passed as a
function argument. To maintain full precision, 64-bit floating point values are used for latitude and longitude.

The function is called as follows:

For navigational calculations, the latitude and longitude values need to be converted to radians since the uM-FPU64
and most math libraries use radians for trigonometric calculations. Decimal degrees can be converted to radians with
the radians() functions.

A simple example of reading the current latitude and longitude is shown below. It enables NMEA input, waits for the
first GPRMC sentence, reads latitude and longitude, disables the NMEA input, and returns.

;--
#function NMEA_to_degrees(long) float64
;
; Convert NMEA latitude and longitude fields to decimal degrees.
;
; input: arg1 field of latitude or longitude value
; output: result decimal degrees
;--
field equ L2 ; field
deg equ F129 ; degrees
mm equ F130 ; minutes

 field = arg1 ; get local copy of parameter
 strfield(field) ; select the field
 deg = strlong() / 100 ; get degrees
 mm = strfloat() % 100 ; get minutes
 deg = deg + mm / 60 ; convert to decimal degrees

 field = field + 1 ; check for N/S or E/W indicator
 strfield(field)
 if strfield() = "S" or strfield() = "W" then deg = -deg

 return deg ; return decimal degrees

#end

 latitude = NMEA_to_degrees(4) ; get latitude in decimal degrees
 longitude = NMEA_to_degrees(6) ; get longitude in decimal degrees

 latitude = radians(NMEA_to_degrees(4)) ; get latitude in radians
 longitude = radians(NMEA_to_degrees(6)) ; get longitude in radians

Micromega Corporation 6 AN101: uM-FPU64 - Reading GPS Data

Waiting for GPS Data
The serial(READ_NMEA+ASYNC) statement will only wait for an NMEA sentence if the instruction buffer is
empty. This provides a way for the microcontroller to abort the instruction (e.g. by sending a NOP instruction). To
ensure that the instruction buffer is empty when the serial(READ_NMEA+ASYNC) statement is executed, the
microcontroller should wait for the Ready status after any serial(READ_NMEA+ASYNC) statement, or any call
to a user-defined function that uses the serial(READ_NMEA+ASYNC) statement.

Error Checking
The serial(STATUS_NMEA+ASYNC) and serial(READ_NMEA+ASYNC) statements set the status byte for
the next available sentence. If no sentence is available, the status byte is set to zero (Z). If the sentence is valid, the
status byte is set to greater-than (GT). If an error occurred, the status byte is set to less-than (LT), and bit 4
(NMEA_OVERRUN) is set if an overrun error occurred, and bit 5 (NMEA_CHECKSUM) is set if a CRC error occurred.

Overrun Errors
The NMEA sentence buffer is 256 bytes in length. The average NMEA sentence is about 60 to 70 bytes, so the
buffer can hold three or four sentences of average length, or more if there are smaller sentences. The sentences
should be read at a rate that is fast enough to avoid overrun. For example, if the GPS is sending data at 4800 baud,
and the average sentence length is 60 bytes, then sentences arrive about every 125 milliseconds and must be
processed at a faster rate to avoid overrun. Sending data to a serial port on the microcontroller at a baud rate that’s
equal to or less than the baud rate for the incoming GPS data is time consuming, and is a common source of overrun
errors. To recover from an overrun error, sentences can be flushed from the buffer, or the serial input can be disabled
and re-enabled to start with an empty buffer. If GPS data is only required periodically, the best solution is to disable
the input between readings.

Infrequent readings
If GPS data is not being read continuously, the serial(DISABLE+ASYNC) statement should be used to disable
serial input when not required, and the serial(ENABLE_NMEA+ASYNC) instruction should be used to enable
NMEA input before taking a reading. This eliminates the serial input interrupt overhead when not required, and
avoids overrun errors.

#function read_GPRMC

 devio(ASYNC, ENABLE, GPS_PIN, RX+BAUD_4800)
 serial(ENABLE_NMEA+ASYNC) ; enable NMEA input mode

 do
 serial(READ_NMEA+ASYNC) ; read next NMEA sentence
 if strfield() = "GPRMC" then exit ; wait for GPRMC sentence
 loop

 latitude = NMEA_to_degrees(4) ; get latitude and longitude
 longitude = NMEA_to_degrees(6)

 serial(DISABLE+ASYNC) ; disable serial input

#end

Micromega Corporation 7 AN101: uM-FPU64 - Reading GPS Data

Debugging Tips
Since NMEA sentences are processed from the string buffer, an effective method for debugging is to simulate the
GPS data by loading the string buffer with a known NMEA string and then executing the code to parse the data.
Sample data can easily be captured from a GPS using a terminal emulator, and sample sentences can be copied to
your test application for processing.

Comment out the code that enables NMEA input mode.

Comment out the serial(READ_NMEA+ASYNC) statement.
Add a strset statement to set the string buffer and a strfield statement to select the first field.

The debugger can then be used to develop and test the parsing code without having to have an active GPS device
(e.g. indoors). Once the parsing code is tested, remove the strset and strfield debug statements, reenable the
original statements, and you’re ready to go with live data.

Sample Code
Sample code for reading GPS data is available on the Micromega website. The files related to this application note
are as follows:

read_GPRMC.ino
Arduino test program for demo1 and demo2.

read_GPRMC-demo1.fp4
FPU code to read latitude and longitude from a single GPRMC sentence.

read_GPRMC-demo2.fp4
FPU code to read latitude and longitude from a single GPRMC sentence with error checking.

read_GPRMC2.ino
Arduino test program for demo3.

read_GPRMC-demo3.fp4
FPU code to read latitude, longitude and time from multiple GPRMC sentences.

 ; devio(ASYNC, ENABLE, GPS_PIN, RX+BAUD_4800)
 ; serial(ENABLE_NMEA+ASYNC)

 ; serial(READ_NMEA+ASYNC)
 strset("GPRMC,185847,A,5105.2567,N,11520.0118,W,29.6,288.2,250313,17.4,E,")
 strfield(1)

Micromega Corporation 8 AN101: uM-FPU64 - Reading GPS Data

Further Information
See the Micromega website (http://www.micromegacorp.com) for additional information regarding the uM-FPU64
floating point coprocessor, including:

uM-FPU64 Datasheet
uM-FPU64 Instruction Set
uM-FPU64 IDE User Manual
uM-FPU64 IDE Compiler Manual

	
	Introduction
	Connecting the GPS device to the uM-FPU64 chip
	Brief Overview of the NMEA-0183 Data Interface
	NMEA sentence parsing using the uM-FPU64 chip
	Reading Latitude and Longitude from the GPRMC sentence
	Waiting for GPS Data
	Error Checking
	Overrun Errors
	Infrequent readings
	Debugging Tips
	Sample Code
	Further Information

